RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. THIRD SEMESTER EXAMINATION, DECEMBER 2019 SECOND YEAR [BATCH 2018-21] MATHEMATICS FOR INDUSTRIAL CHEMISTRY [General] Paper : III

: 21/12/2019 : 11 am – 2 pm Time

Date

[Use a separate Answer Book <u>for each group</u>]

<u>Group – A</u>

Answer <u>an</u>	<u>iy five</u> ques	tions from	Question n	uos. 1 to 8	:
------------------	---------------------	------------	------------	-------------	---

- If $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents two intersecting lines, then find the angle between 1. them. (5)
- Find the equation of the plane bisecting the angle between the planes 3x 6y + 2z + 5 = 0 and 2. 4x - 12y + 3z - 3 = 0 which contains the origin.
- Find the equation of the plane through the straight line x+y-2z+4=0=3x-y+2z+1 and parallel to the 3. straight line $\frac{x-2}{2} = \frac{y-2}{2} = \frac{z-1}{-1}$. (5)
- Find the shortest distance between the straight lines $\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$ and $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$. (5) 4.
- Show that $\frac{a}{y-z} + \frac{b}{z-x} + \frac{c}{x-y} = 0$ represents a pair of intersecting planes whose line of intersection 5. is equally inclined to the axes. (5)
- On the conic $r = \frac{21}{5 2\cos\theta}$ find the point with the least radius vector. 6. (5)
- Show that the polar of any point on the circle $x^2 + y^2 2ax 3a^2 = 0$ with respect to the circle 7. $x^{2} + y^{2} + 2ax - 3a^{2} = 0$ will be a tangent to the parabola $y^{2} = -4ax$. (5)
- Transform the following equation to its canonical form. 8. $25x^2 - 14xy + 25y^2 + 64x - 64y - 224 = 0$.

Answer any five questions from Question nos. 9 to 16:

Show that the following differential equation is exact and using this property find the general 9. solution. a(x, a)

$$2(y+1)e^{x} dx + 2(e^{x} - 2y)dy = 0.$$
(5)

10. Solve :
$$\frac{dy}{dx} + \frac{1}{3}y = xy^3$$
. (5)

11. Find the orthogonal trajectories of the family of parabolas $y^2 = 4ax$, a being the parameter. (5)

[5×5]

(5)

Full Marks: 75

(5)

[5×5]

- 12. Apply the method of variation of parameters to solve $\frac{d^2 y}{dx^2} + 4y = \tan 2x.$
- 13. Solve : $y = px + \sqrt{a^2 p^2 + b^2}$. (5)

(5)

[5×5]

14. Show that the differential equation $\frac{dy}{dx} + P(x)y = Q(x)y^n$, where $n \neq 1$ can be reduced to a linear differential equation using the substitution $z = y^{n-1}$. (5)

15. Solve:
$$x \, dx + y \, dy + \frac{x \, dy - y \, dx}{x^2 + y^2} = 0$$
, given that y=1, when x=1. (5)

16. Solve: $\frac{dy}{dx} + \frac{3x+2y-5}{2x+3y-5} = 0.$ (5)

<u>Group – B</u>

Answer any five questions from Question Nos. 17 to 24 :

- 17. (a) Let $S = \{(x, y, z) \in \mathbb{R}^3 : y = 0, z = 0\}$ and $T = \{(x, y, z) \in \mathbb{R}^3 : x = 0, y = 0\}$ be two subspaces of \mathbb{R}^3 . Does $S \cup T$ forms a subspaces of \mathbb{R}^3 ?
 - (b) Examine if the set S is a subspace of \mathbb{R}^3 , where $S = \{(x, y, z) \in \mathbb{R}^3 : xy = z\}$.
- 18. Show that the set $\{1, x, x^2, \dots, x^n, \dots\}$ is a basis of the vector space all polynomials $P(\mathbb{R})$. (5)
- 19. (a) Let V and W be vector spaces over a field F. Let $T: V \to W$ be a linear transformation. Show that T is one-to-one if and only if ker $T = \{\theta\}$, where θ is the additive identity of V. (3)
 - (b) Check whether $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(a_1, a_2) = (a_1 + 1, 2a_2)$ is a linear transformation or not. (2)
- 20. (a) Let $T: P_2(\mathbb{R}) \to P_3(\mathbb{R})$ be a linear transformation defined by $T(f(x)) = 2f'(x) + \int_0^x 3f(t) dt$. Does T is one-to-one and onto ?
 - (b) State the Rank-Nullity theorem .
- 21. (a) Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^2$ is linear, T(1,0) = (1,4) and T(1,1) = (2,5). What is T(2,3)? (2)

(b) Let , $T: M_{2\times 2}(\mathbb{R}) \to P_2(\mathbb{R})$ be a linear transformation defined by $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a+b) + 2dx + bx^2$. Let $\beta = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ and $\gamma = \{1, x, x^2\}$ be the standard basis of $M_{2\times 2}(\mathbb{R})$ and $P_2(\mathbb{R})$ respectively. Compute $[T]_{\beta}^{\gamma}$. (3)

- 22. Extend the set S to obtain a basis of the vector space of \mathbb{R}^3 , where $S = \{(1,2,1), (2,1,1)\}$. (5)
- 23. Show that \mathbb{R} is a vector space over \mathbb{Q} , where \mathbb{Q} denotes the set of all rational numbers. Is \mathbb{Q} is a vector space over \mathbb{R} ? Justify. (3+2)
- 24. Determine the linear mapping $T : \mathbb{R}^3 \to \mathbb{R}^3$ that maps the basis vectors (0,1,1), (1,0,1), (1,1,0) of \mathbb{R}^3 to the vectors (2,1,1), (1,2,1), (1,1,2) respectively. Verify that dim KerT + dim ImT = 3. (3+2)

— × –